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Key points

� In the present study, we provide evidence for divergent physiological responses to moderate
compared to severe hypoxia, addressing an important knowledge gap related to severity,
duration and after-effects of hypoxia encountered in cardiopulmonary situations.

� The physiological responses to moderate and severe hypoxia were not proportional, linear or
concurrent with the time-of-day.

� Hypoxia elicited severity-dependent physiological responses that either persisted or fluctuated
throughout normoxic recovery.

� The physiological basis for these distinct cardiovascular responses implicates a shift in the
sympathovagal set point and probably not molecular changes at the artery resulting from
hypoxic stress.

Abstract Hypoxia is both a consequence and cause of many acute and chronic diseases.
Severe hypoxia causes hypertension with cardiovascular sequelae; however, the rare studies
using moderate severities of hypoxia indicate that it can be beneficial, suggesting that hypo-
xia may not always be detrimental. Comparisons between studies are difficult because of the
varied classifications of hypoxic severities, methods of delivery and use of anaesthetics. Thus, to
investigate the long-term effects of moderate hypoxia on cardiovascular health, radiotelemetry
was used to obtain in vivo physiological measurements in unanaesthetized mice during 24 h of
either moderate (F IO2 = 0.15) or severe (F IO2 = 0.09) hypoxia, followed by 72 h of normoxic
recovery. Systolic blood pressure was decreased during recovery following moderate hypoxia but
increased following severe hypoxia. Moderate and severe hypoxia increased haeme oxygenase-1
expression during recovery, suggesting parity in hypoxic stress at the level of the artery. Severe
but not moderate hypoxia increased the low/high frequency ratio of heart rate variability 72 h
post-hypoxia, indicating a shift in sympathovagal balance. Moderate hypoxia dampened the
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amplitude of circadian rhythm, whereas severe disrupted rhythm during the entire insult, with
perturbations persisting throughout normoxic recovery. Thus, hypoxic severity differentially
regulates circadian blood pressure.
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Introduction

Impairments in oxygen delivery are both a cause
and consequence of many acute and chronic disease
states, such as obstructive sleep apnoea, heart failure
and chronic obstructive pulmonary disease (COPD),
and are associated with a reduced quality of
life and increased mortality. Investigations of the
pathophysiological consequences of hypoxia primarily
illustrate the detrimental outcomes of sustained (Sheedy
et al. 1996; Viganò et al. 2011; Simpson & Iscoe, 2014) or
intermittent (Fletcher et al. 1992; Campen et al. 2005;
Simpson et al. 2008) severe hypoxia. Whether hypo-
xia is caused by breathing low oxygen (�F IO2 < 0.10)
or the application of a respiratory load, the resultant
hypoxic outcome is equivalent to what would be
observed physiologically at an elevation of >6500 m
above sea level (ranging between the peaks of Mount
Kilimanjaro to Mount Everest). The nature of hypo-
xia is a product of available oxygen, prevailing pressure,
duration of exposure, adaptation and metabolic demand
(including organ-specific hypoxia). However, hypoxia is
also associated with beneficial outcomes in cognitive
performance (Leconte et al. 2012). Importantly, there is
no standardization of hypoxic thresholds and it is difficult
to reconcile the conditions to which each applies as a result
of disagreements in the classification of severities (e.g.
mild, moderate and severe), method of delivery, duration
and, in some cases, use of anaesthetic. Furthermore, direct
comparisons of moderate and severe hypoxia are scarce
(Frappell et al. 1991; Morgan et al. 2014) and studies
investigating the pathophysiology of moderate hypoxia are
rare (Haider et al. 2009). This is an important omission
given that the clinical gradation of hypoxia in most
disease states is typically mild to moderate (approximately
equivalent to F IO2 = 0.15; �2500 m above sea level, e.g.
Aspen, CO) (Thomas et al. 1961; Hayashi, 1976; Tuck
et al. 1984; Oswald-Mammosser et al. 1995; Mannino et al.
2002).

Systemic reductions in arterial oxygen pressure (PaO2),
either by reducing the fraction of inspired oxygen
(F IO2) or haemoglobin content, do not necessarily
equate to similar hypoxia of various organs. Activation
of compensatory neural and vascular mechanisms
attempts to maintain sufficient oxygenation of vital
organs. Following decreases in PaO2, expression of

hypoxia inducible factor (HIF)-1α, a highly-conserved,
oxygen-sensitive transcript factor, is elevated in some
organs (e.g. brain) but remains unresponsive until PaO2 is
severely reduced in others (e.g. kidney) (Stroka et al. 2001).
The time profile of HIF-1α expression also appears to be
organ-specific and differs between moderate and severe
hypoxia (Stroka et al. 2001). This organ-specific trans-
criptional response to hypoxia is also seen in anaemia,
where, in response to mild, moderate and severe anaemia,
heterogeneous expression of HIF-1α occurs in the brain,
kidney and liver (Tsui et al. 2014; Mistry et al. 2018). These
patterns are not necessarily reflected in the expression
of HIF downstream targets [e.g. haeme-oxygenase I
(HMOX1), erythropoietin (EPO)] (Tsui et al. 2014),
suggesting that HIF alone is not sufficient to predict
expression. The severity of hypoxia also produces different
metabolic responses. Both moderate and severe hypoxia
depress aerobic metabolism, whereas only severe hypo-
xia increases anaerobic metabolism, with changes that
persist following normoxic recovery (Frappell et al. 1991).
These data support the concept that the molecular and
biochemical responses to moderate and severe hypoxia
are heterogeneous.

Further discrepancies between moderate and severe
hypoxia are also present in the cardiovascular response
following hypoxia. Exposure to both intermittent and
sustained severe hypoxia leads to hypertension in animals
(Fletcher et al. 1992; Vaziri & Wang, 1996; Campen
et al. 2005; Zoccal et al. 2007) and humans (Olea et al.
2014). By contrast, individuals living in high-altitude,
moderately hypoxic environments do not show elevations
in blood pressure (Ruiz & Peñaloza, 1977; Bruno et al.
2014); however, the latter findings could be the result
of long-term genetic adaptations (Hochachka et al. 1996;
Moore, 2001; Lorenzo et al. 2014). Interestingly, exposure
to mild, intermittent hypoxia can be cardioprotective
(Navarrete-Opazo & Mitchell, 2014; Mateika et al. 2015;
El-Chami et al. 2017), although the corresponding effects
in health are unknown. To determine pathophysological
mechanisms, it is important to first establish the effect of
variable hypoxic gradations in health.

The present study aimed to compare the cardiovascular
responses to moderate and severe hypoxia followed by
normoxic recovery. We hypothesized that the physio-
logical response to moderate hypoxia is not simply a
scaled down response to severe hypoxia. Radiotelemetry
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provided unanaesthetized, unrestrained and continuous
in vivo physiological measurements (Kim et al. 2013)
before, during and after either moderate or severe hypo-
xia. We found distinct cardiovascular responses between
moderate and severe hypoxia that were not proportional,
linear or concurrent with the time-of-day. Divergent
changes in sympathovagal activity could be the cause for
the observed differences. Finally, recovery from moderate
and severe hypoxia elicited either persistent or fluctuating
cardiovascular changes during normoxic recovery.

Methods

Ethical approval

Adult male C57Bl/6J mice were bred in our facility and
were aged 8–12 weeks (�25 g body weight) prior to
surgery. Animals were housed under a 12:12 h light/dark
cycle (lights on 08.00 h) at 24°C and 45% relative
humidity. Following telemetry implantation, animals were
housed individually with food and water being provided
ad libitum. Housing and experimental procedures were
approved by the Animal Care Committee at the University
of Guelph and conformed with the guidelines of the
Canadian Council on Animal Care.

Telemetry

HDX11 murine telemetry transmitters (Data Science
International, St Paul, MN, USA) were used to
measure systolic blood pressure (SBP), heart rate, core
body temperature and physical activity. Briefly, mice
were anaesthetized with isoflurane/oxygen (2%:100%),
intubated and body temperature was maintained using
a water-filled heating pad. A local anaesthetic 50:50 mix
of lidocaine (3 mg kg−1) and bupivicaine (1.5 mg kg−1)
was administered S.C. at the incision sites. The right
carotid artery was isolated and the pressure catheter
was inserted and secured in place using 7-0 suture and
vet bond (3M, London, ON, Canada). To accurately
measure core body temperature, the telemetry units were
implanted in the abdomen; a 7 cm pressure catheter is
superior to the standard 5 cm length for minimizing
kinking of the pressure catheter, which can cause signal
dropout of the blood pressure tracing. Following insertion,
the transmitter was advanced S.C. to the abdomen and
secured intraperitoneally. Two electrocardiography leads
were placed S.C., one above the rib cage and the second
above the abdominal wall, and secured to the under-
lying muscle layer. Animals recovered on a warming bed
and carefully monitored for post-surgical complications.
Postoperative analgesic buprenorphine (0.1 mg kg−1) was
given upon awakening and at 8 and 24 h postoperatively;
subsequent analgesic was given as required.

Two-weeks postoperatively, mice were individually
housed within an environmental chamber (830-ABB; Plas
Labs, Lansing, MI, USA) (Fig. 1) where oxygen levels could
be titrated accordingly (ProOx 110; BioSpherix, New York,
NY, USA). Drierite (WA Hammond Drierite Company,
Xenia, OH, USA) and calcium carbonate were added to
the chamber to maintain constant ambient humidity and
prevent an elevation in carbon dioxide. Each cage was
placed on a telemetry receiver (RPC-1; Data Science Inter-
national) within custom made Faraday cages. Telemetry
signals were collected every 5 min for 30 s. Ambient
temperature (C10T; Data Science International) and
pressure (APR-1; Data Science International) were also
recorded throughout the duration of the study. All
signals were collected using computer acquisition software
(Dataquest ART V.3.3; Data Science International) and
exported to Excel 2011 (Microsoft Corp., Redmond, WA,
USA) for further analysis.

Hypoxia study design

Each animal was exposed to only one hypoxic insult (either
moderate or severe; a maximum of three animals at a
time). Baseline recordings were obtained over a weekend
and hypoxia [moderate (F IO2 = 0.15) or severe (F IO2 =
0.09)] was gradually induced on the monday morning
at 08.00 h over 15 min. After 24 h of hypoxia, ambient
oxygen levels were restored and telemetry continued for
an additional 72 h.

Quantitative PCR analysis

At the end of the normoxic recovery, animals were
re-anaesthetized with isoflurane. Mesenteric artery
samples were isolated and excised using a dissection micro-
scope. Following excision, samples were immediately
frozen in liquid nitrogen and stored at −80°C until
analysis. RNA extraction was performed on �50 mg of
mesenteric arteries (pooled from three animals) with
Trizol reagent in accordance with the manufacturer’s
instructions (Invitrogen, Life Technologies, Burlington,
ON, Canada). RNA samples were then treated using
a RNase Free DNase (Qiagen, Valencia, CA, USA)
in accordance with the manufacturer’s instructions.
Concentrations of isolated RNA were quantified using a
spectrophotometer (NanoDrop, ND1000; Thermo Fisher
Scientific, Ottawa, ON, Canada). Generation of cDNA
was completed using qScript cDNA SuperMix (Quanta
Biosciences, Beverly, MD, USA) in accordance with the
manufacturer’s instructions using a standardized 100 ng
of RNA per sample. Quantitative real-time PCR was
performed using SuperScript II Reverse Transcriptase
(Invitrogen, Life Technologies) with a CFX Connect
Real-Time PCR Detection System (Bio-Rad, Mississauga,
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Figure 1. Experimental set-up
Hypoxia chamber and telemetry unit set-up. [Colour figure can be viewed at wileyonlinelibrary.com]

ON, Canada) and primers for HMOX1, EPO and GAPDH
(Table 1). All RNA data are expressed relative to GAPDH,
which was stable across all states with no difference in the
raw CT values observed between groups (P > 0.05).

Immunoblotting

Samples were homogenized in buffer with a phosphatase
and protease inhibitor cocktail and total protein content
was measured by the bicinchoninic acid assay as described
previously (Foster et al. 2017). Briefly, samples were

loaded onto a 4–20% Criterion TGX precast gel (Bio-Rad)
alongside 10 μL of Precision Plus Protein Standards
Kaleidoscope ladder (Bio-Rad) and then separated by
SDS-PAGE followed by immunoblotting. Nitrocellulose
membranes were rinsed in ddH2O and then incubated
in Pierce Reversible MemCode Stain (Thermo Fisher
Scientific) for 5 min to confirm equal protein transfer. The
blot was imaged using a ChemiDoc MP Imaging System
(Bio-Rad) prior to stain removal (Pierce Stain Eraser;
Thermo Fisher Scientific). Membranes were blocked
(5% non-fat dry milk in 1 × Tris-buffered saline) and

Table 1. Sequence information

Gene Sequence GenBank
accession number

Tm (°C)

HMOX1 5′-GGTGATGGCTTCCTTGTACC-3′

5′-AGTGAGGCCCATACCAGAAG-3′
NM 010442.2 58

EPO 5′-CATCTGCGACAGTCGAGTTCTG-3′

5′-CACACCCATCGTGACATTTTC-3′
NM 007942.2 61

GAPDH 5′-GCACAGTCAAGGCCGAGAAT-3′

5′-GCCTTCTCCATGGTGGTGAA-3′
NM 001289726.1
NM 008084.3

60
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incubated with a primary anti-HMOX1 antibody (dilution
1:1000) (catalogue number 82585; Abcam, Toronto, ON,
Canada) overnight at 4°C. Membranes were washed
and subsequently incubated with a goat anti-rabbit
horseradish peroxidase conjugated secondary antibody
(dilution 1:2000) (catalogue number 2054; Santa Cruz
Biotechnology, Dallas, TX, USA). All antibody dilutions
were completed in 1% non-fat dry milk and membrane
washes were completed in 1 × Tris-buffered saline with
0.5% Tween. Signal was detected by chemiluminescence
(Thermo Fisher Scientific), imaged (ChemiDoc; Bio-Rad)
and then quantified using Image Lab software (Bio-Rad).
Values were obtained by measuring the target band relative
to the total protein of the lane.

Heart rate variability

Frequency-domain heart rate variability (HRV) analysis
was conducted using Kubios Heart Rate Variability
Analysis software, version 2.2 (University of Kuopio,
Kuopio, Finland). The continuous R–R interval signal
was re-sampled to 20 Hz and analysed by fast Fourier
transformation. Spectral analysis was completed on
one 30 s epoch taken at the beginning of each hour
during a segment of the lights on period (10.00 to
18.00 h; corresponding to 2–10 and 122–130 h Zeitgeber
time for baseline and normoxic recovery, respectively).
The results are presented as the mean value of these
nine segments. This method was selected to ensure signal
stationarity and improve overall reproducibility (Thireau
et al. 2008). Each file was visually inspected to confirm the
absence of ectopic beats or signal artefact, defined as <5%
of the total number of beats. If present, abnormal beats
were corrected using a piecewise cubic spline interpolation
method. As recommended for mice, frequency cut-offs of
0.15–1.5 Hz were selected as the low frequency (LF) range
and 1.5–5.0 Hz as the high frequency (HF) range, which
has been validated pharmacologically (Thireau et al. 2008).
The LF and HF spectral values are presented as relative (%)
and normalized power (nu). Normalized power removes
the contributions of very low frequency (0.00–0.15 Hz) to
total power. Total power consists of the area over the whole
frequency spectrum (0.0–5.0 Hz). The LF/HF ratio was
calculated as a general marker of sympathovagal balance
(Nunn et al. 2013).

Statistical analysis

Raw data for SBP, heart rate, body temperature and
physical activity were averaged for each hour to obtain
hourly means. For baseline measurements, data means
for each parameter were organized into 48 h periods
and then averaged between all animals. For hypoxia and
normoxic recovery, data means were averaged for the

entirety between all animals. Each animal was recorded
at baseline prior to hypoxic exposure, allowing them to
serve as their own control. Circadian mesor (i.e. the mean
value around which the wave oscillates), amplitude (i.e.
difference between peak/trough and mean) and acrophase
(i.e. time at which peak occurs) values were calculated
and analysed using cosinor analysis as described pre-
viously (Munakata et al. 1990; Refinetti et al. 2007).
For telemetry data, one-way repeated measures ANOVA
were performed on ten 1 h averages from each animal
during both light and dark cycles (i.e. excluding the four
1 h intervals that bordered both cycles to remove the
influence of transition periods). If a significant main effect
of time was detected, Holm–Sidak post hoc analysis was
performed on data sets that were normally distributed.
For non-normally distributed data, Friedman’s test was
used with Dunn’s post hoc test. A 5 × 2 (time × group)
mixed model ANOVA was also performed on 10 h averaged
telemetry data to determine whether there were differences
between the hypoxic conditions during lights on and lights
off. If there was a significant interaction, Holm–Sidak
post hoc analysis was performed to compare differences
between severe and moderate hypoxia at the same time
point. Statistical analysis of HRV data was completed
using a 2 × 2 (time × group) mixed model ANOVA
and Holm–Sidak post hoc analysis was performed when
appropriate. Baseline and 72 h post-hypoxia were chosen
for HRV analysis because the latter showed the most
divergent response in SBP. HRV analyses for all time points
using a 5 × 2 (time × group) mixed model ANOVA are
also presented. A 2 × 2 (time × group) mixed model
ANOVA was performed for mRNA expression, except that
time and group were both between subject comparisons.
For protein data, one-tailed Mann–Whitney tests were
performed comparing hypoxic conditions to normoxia.
Graphical and data analyses were completed using Prism,
version 6 (GraphPad Inc., La Jolla, CA, USA). P < 0.05
was considered statistically significant.

Results

Body temperature and activity responses to moderate
and severe hypoxia

To confirm that mice responded to hypoxia, we measured
body temperature for hypoxia-induced anapyrexia. Not
surprisingly, and in agreement with previous research
(Yuen et al. 2012), severe hypoxia decreased body
temperature during lights on and off (Fig. 2A, C and D).
To confirm that this was a simple static difference or an
effect on circadian rhythm, we performed cosinor analysis.
Indeed, rhythm during severe hypoxia was disrupted with
a mild disagreement of R2 (goodness-of-fit), decreased
mesor and increased amplitude (Fig. 3 and Table 2).
During moderate hypoxia, body temperature was slightly

C© 2018 The Authors. The Journal of Physiology C© 2018 The Physiological Society
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decreased during lights off but not lights on (Fig. 2B, E
and F); rhythm was unaffected (Fig. 3 and Table 2). To
investigate whether hypoxia had any residual effects on
physiological parameters, we continued our analysis after
return to normoxia (Fig. 2A–F and Table 2). Although

severe hypoxia had a rebound change in body temperature
that persisted during lights off, moderate hypoxia had only
a modest increase in body temperature in the first 12 h of
recovery, with another modest increase compared to base-
line at 72 h post-hypoxia. Normoxic recovery from severe
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Figure 2. Physiological responses of body
temperature during baseline, severe or
moderate hypoxia, and 72 hours of
normoxic recovery
Hourly averages for severe (A) or moderate (B)
hypoxia experiments. Average body
temperatures recorded following normoxia,
severe hypoxia, 24 h post-hypoxia, 48 h
post-hypoxia and 72 h post-hypoxia during
lights on (C) (χ2 = 235.3, d.f. = 4, P < 0.0001)
and lights off (D) (F4,316 = 269.8, P < 0.0001).
Average body temperatures recorded following
baseline, moderate hypoxia, 24 h post-hypoxia,
48 h post-hypoxia and 72 h post-hypoxia during
lights on (E) (χ2 = 23.4, d.f. = 4, P = 0.0001)
and lights off (F) (F4,316 = 7.4, P < 0.0001).
Two-way ANOVA of body temperature during
lights on (G) (interaction F4,56 = 94.0,
P < 0.0001; main effect of time F4,56 = 113.1,
P < 0.0001; main effect of group F1,14 = 1.1,
P = 0.3158) and lights off (H) (interaction
F4,56 = 20.8, P < 0.0001; main effect of time
F4,56 = 29.8, P < 0.0001; main effect of group
F1,14 = 0.1, P = 0.7579). For panels (C) to (F):
∗P < 0.05 compared to baseline. For panels (G)
and (H): a, significant interaction; b, significant
main effect of time; †P < 0.05 compared to
moderate hypoxia at the same time point. Values
expressed are the mean ± SEM (n = 8 per
group). Note: y-axes for (A) and (B) are broader
than (C) to (H) for visual clarity.
[Colour figure can be viewed at
wileyonlinelibrary.com]
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Figure 3. Cosinor analysis of severe hypoxia
Graphical representation of cosinor analysis of severe hypoxia (9% O2).
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Table 2. Cosinor analysis of physiological parameters

Mesor Amplitude Acrophase (h) R2

9% O2

SBP (mmHg)
Baseline 117.6 ± 0.6 4.3 ± 0.9 14.5 ± 0.2 0.54
Hypoxia 110.8 ± 1.2∗ 10.3 ± 1.7∗ 20.8 ± 0.2 0.66
24 h Post hypoxia 121.1 ± 0.8∗ 1.6 ± 1.1∗ 20.4 ± 0.7 0.09
48 h Post hypoxia 124.2 ± 0.6∗ 4.3 ± 0.8 14.6 ± 0.2 0.58
72 h Post hypoxia 123.5 ± 0.6∗ 2.8 ± 0.8 20.7 ± 0.3 0.35

HR (beats min–1)
Baseline 481 ± 5 29 ± 7 15.0 ± 0.2 0.44
Hypoxia 376 ± 5∗ 42 ± 8 15.4 ± 0.2 0.62
24 h Post hypoxia 459 ± 6∗ 23 ± 9 14.3 ± 0.4 0.25
48 h Post hypoxia 454 ± 6∗ 37 ± 8 14.6 ± 0.3 0.46
72 h Post hypoxia 456 ± 7∗ 41 ± 10 14.6 ± 0.2 0.44

Temperature (°C)
Baseline 36.4 ± 0.1 0.5 ± 0.1 14.3 ± 0.2 0.51
Hypoxia 33.9 ± 0.1∗ 1.4 ± 0.2∗ 20.7 ± 0.2 0.71
24 h Post hypoxia 36.9 ± 0.1∗ 0.1 ± 0.1∗ 14.7 ± 1.6 0.02
48 h Post hypoxia 36.7 ± 0.1∗ 0.7 ± 0.1 14.3 ± 0.2 0.62
72 h Post hypoxia 36.7 ± 0.1∗ 0.7 ± 0.1 20.5 ± 0.2 0.65

Activity (AU)
Baseline 4.0 ± 0.5 1.7 ± 0.7 14.3 ± 0.4 0.21
Hypoxia 1.2 ± 0.2∗ 0.4 ± 0.2 14.1 ± 0.6 0.15
24 h Post hypoxia 4.6 ± 0.6 1.8 ± 0.9 13.5 ± 0.5 0.16
48 h Post hypoxia 4.6 ± 0.7 3.0 ± 0.9 20.7 ± 0.3 0.33
72 h Post hypoxia 4.5 ± 0.7 2.5 ± 1.0 20.5 ± 0.4 0.25

15% O2

SBP (mmHg)
Baseline 117.1 ± 0.9 6.0 ± 1.2 14.3 ± 0.2 0.54
Hypoxia 114.2 ± 0.9∗ 4.9 ± 1.3 20.5 ± 0.3 0.45
24 h Post hypoxia 114.6 ± 1.0 4.2 ± 1.4 14.0 ± 0.3 0.30
48 h Post hypoxia 110.6 ± 0.7∗ 4.6 ± 1.1 20.0 ± 0.2 0.47
72 h Post hypoxia 109.0 ± 0.9∗ 6.2 ± 1.3 20.3 ± 0.2 0.54

HR (beats min–1)
Baseline 516 ± 4 33 ± 6 14.5 ± 0.2 0.59
Hypoxia 537 ± 6∗ 16 ± 8∗ 1.0 ± 0.5∗ 0.16
24 h Post hypoxia 491 ± 6∗ 34 ± 8 14.3 ± 0.2 0.48
48 h Post hypoxia 490 ± 6∗ 29 ± 8 14.4 ± 0.3 0.40
72 h Post hypoxia 491 ± 7∗ 44 ± 10 14.4 ± 0.2 0.50

Temperature (°C)
Baseline 36.3 ± 0.1 0.5 ± 0.1 20.4 ± 0.1 0.73
Hypoxia 36.2 ± 0.1 0.6 ± 0.1 14.0 ± 0.2 0.71
24 h Post hypoxia 36.4 ± 0.1 0.6 ± 0.1 20.4 ± 0.2 0.69
48 h Post hypoxia 36.4 ± 0.1 0.6 ± 0.1 14.1 ± 0.2 0.68
72 h Post hypoxia 36.4 ± 0.1 0.7 ± 0.1 20.4 ± 0.1 0.76

Activity (AU)
Baseline 4.0 ± 0.3 1.6 ± 0.4 20.3 ± 0.3 0.39
Hypoxia 4.5 ± 0.4 2.3 ± 0.6 20.3 ± 0.3 0.42
24 h Post hypoxia 4.9 ± 0.4 2.2 ± 0.6 20.3 ± 0.3 0.39
48 h Post hypoxia 4.4 ± 0.5 2.4 ± 0.6 20.2 ± 0.3 0.40
72 h Post hypoxia 5.5 ± 0.5∗ 3.6 ± 0.7∗ 20.1 ± 0.2 0.53

Data are the mean ± SEM. HR, heart rate; mesor, midline estimating statistic of rhythm; amplitude, half the extent of predictable
variation within a cycle; acrophase, the time of overall high values recurring in each cycle. ∗P < 0.05 compared to baseline.
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hypoxia also had a rebound effect on mesor and amplitude
with a strong disagreement of R2, where the former
persisted and the latter two dissipated after 24 h. Normoxic
recovery from moderate hypoxia did not significantly
affect rhythm. A two-way (time × group) ANOVA
indicated a divergent response in body temperature to
hypoxic severity (Fig. 2G and H). Severe hypoxia induced
a rebound in body temperature that exceeded baseline
levels, at 24 h post-hypoxia, whereas moderate hypoxia
induced a mild decrease in body temperature that did not
persist during normoxic recovery.

Similar to body temperature, severe hypoxia decreased
activity during lights on and off (Fig. 5A, C and
D). Rhythm was disrupted, as indicated by a strong
disagreement in R2 and a decreased mesor (Fig. 3
and Table 2). By contrast, moderate hypoxia had no
effect on overall activity (Fig. 5B, E and F) or rhythm
(Fig. 3 and Table 2). Severe hypoxia had no effects on
activity during normoxic recovery, including rhythm.
Interestingly, moderate hypoxia increased activity only
at 72 h post-hypoxia during lights off (i.e. the last
12 h of recording). Rhythm was also disrupted at
72 h post-hypoxia because R2 was in mild disagreement
and mesor and amplitude were increased. A two-way
(time × group) ANOVA confirmed a divergent response
in activity to hypoxic severity (Fig. 5G and H), with severe
but not moderate hypoxia causing a decrease in activity.
Thus, activity changes in response to hypoxia did not
explain changes in body temperature during normoxic
recovery. In addition, there were no differences in activity
between groups at baseline or at any time post-hypoxia
(data not shown), suggesting that the arousal state was
similar.

Systolic blood pressure responses to moderate and
severe hypoxia

To determine the physiological risk for hypertension as a
result of the severity of hypoxia, we assessed ambulatory
SBP. Severe hypoxia decreased SBP during lights on but
not lights off (Fig. 6A, C and D). Rhythm was disrupted
during severe hypoxia with a mild disagreement of R2,
decreased mesor and increased amplitude, although with
no change in acrophase (Fig. 3 and Table 2). By contrast,
moderate hypoxia decreased SBP during lights off but
not lights on (Fig. 6B, E and F); rhythm was disrupted
with a mild disagreement of R2 and decreased mesor,
although with no change in amplitude or acrophase (Fig. 3
and Table 2). Surprisingly, although severe hypoxia had a
rebound change in SBP, moderate hypoxia had a persistent
change over 72 h. Severe hypoxia also had a rebound effect
on mesor and amplitude with a strong disagreement of R2,
where the former persisted and the latter two dissipated
after 24 h. Moderate hypoxia only had a persistent effect

on mesor throughout 72 h. Furthermore, the after-effects
of severe and moderate hypoxia were most salient in lights
on or lights off, respectively. A two-way (time × group)
ANOVA confirmed a divergent response in SBP to hypo-
xic severity (Fig. 6G and H) acutely and in recovery, thus
indicating that hypoxic severity differentially regulates
circadian blood pressure. Body temperature and activity
were similar for this subset of animals compared to the full
cohort (data not shown).

Heart rate responses to severe and moderate hypoxia

Next, we examined whether changes in blood pressure
were associated with corresponding changes in heart rate.
Severe hypoxia decreased heart rate during lights on and
lights off (Fig. 7A, C and D). Heart rate rhythm was also
disrupted during severe hypoxia with a mild disagreement
of R2 and decreased mesor (Fig. 3 and Table 2). By
contrast, moderate hypoxia increased heart rate during
lights on but not lights off (Fig. 7B, E and F); rhythm
was disrupted with a strong disagreement of R2 and with
increased mesor and decreased acrophase (Fig. 3 and
Table 2). During normoxic recovery, heart rate rebounded
initially following severe hypoxia with fluctuations during
the 72 h period, then returned to baseline (Fig. 7C and
D). There was a strong disagreement of R2 at 24 h
following severe hypoxia, although it returned to base-
line by 72 h; mesor was decreased throughout. Conversely,
moderate hypoxia decreased heart rate throughout the
majority of the normoxic recovery period. Rhythm was
disrupted following moderate hypoxia, as indicated by a
mild decrease in R2 and a sustained decrease in mesor. A
two-way (time × group) ANOVA confirmed a divergent
response in heart rate to hypoxic severity (Fig. 7G and
H). Thus, severe and moderate hypoxia had opposing
effects on heart rate during hypoxic stress with a general
reduction in heart rate during recovery.

Heart rate variability responses to moderate and
severe hypoxia

To further investigate the mechanism underlying changes
in SBP and heart rate, we utilized HRV analysis 72 h post
hypoxia because this represented the greatest difference in
divergent SBP response (Table 3; HRV data for all time
points are presented in Table 4). R–R interval increased
only in response to severe hypoxia (Fig. 8A and Table 3).
Moderate hypoxia increased the SDs of normal R–R inter-
vals and root mean square of successive normal R–R
interval differences 72 h post hypoxia compared to base-
line (Table 3). Total spectral power was also generally
increased in response to hypoxia. Hypoxic severity induced
a divergent response to the LF/HF ratio; there was no
change in the LF/HF ratio following moderate hypoxia,
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Figure 4. Cosinor analysis of moderate hypoxia
Graphical representation of cosinor analysis of moderate hypoxia (15% O2).
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whereas severe hypoxia increased it. The change in the
LF/HF ratio in response to severe hypoxia was mediated
by an increase in the relative and normalized power of the
LF band following severe hypoxia and a corresponding
decrease in the HF band. Following moderate hypoxia,

the relative and normalized powers of the LF and
HF bands were decreased and increased, respectively
(Fig. 8B and C and Table 3). In addition, LF power was
higher and HF power was lower 72 h following severe
hypoxia compared to moderate hypoxia. This was also
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Figure 5. Physiological responses of activity
during baseline, severe or moderate
hypoxia, and 72 hours of normoxic recovery
Hourly averages for severe (A) and moderate (B)
hypoxia experiments. Average activity recorded
following baseline, severe hypoxia, 24 h
post-hypoxia, 48 h post-hypoxia and 72 h
post-hypoxia during lights on (C) (χ2 = 80.7,
d.f. = 4, P < 0.0001) and lights off (D)
(χ2 = 112.8, d.f. = 4, P < 0.0001). Average
body temperatures recorded following baseline,
moderate hypoxia, 24 h post-hypoxia, 48 h
post-hypoxia and 72 h post-hypoxia during
lights on (E) (χ2 = 14.7, d.f. = 4, P = 0.0055)
and lights off (F) (χ2 = 10.1, d.f. = 4,
P = 0.0396). Two-way ANOVA of activity during
lights on (G) (interaction F4,56 = 4.0,
P = 0.0062; main effect of time F4,56 = 10.0,
P < 0.0001; main effect of group F1,14 = 1.3,
P = 0.2791) and lights off (H) (interaction
F4,56 = 11.8, P < 0.0001; main effect of time
F4,56 = 13.5, P < 0.0001; main effect of group
F1,14 = 3.2, P = 0.0945). For panels (C) to (F):
∗P < 0.05 compared to baseline. For panels (G)
and (H): a, significant interaction; b, significant
main effect of time; †P < 0.05 compared to
moderate hypoxia at the same time point.
Values expressed are the mean ± SEM (n = 8
per group). Note: y-axes for (A) and (B) are
broader than (C) to (H) for visual clarity.
[Colour figure can be viewed at
wileyonlinelibrary.com]
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indicated by an increase in the LF/HF ratio following
severe compared to moderate hypoxia (Fig. 8D). Thus,
severe hypoxia induced a shift in sympathovagal balance
towards sympathetic dominance, whereas moderate hypo-
xia increased parasympathetic activity with a potential
decrease in sympathetic activation.

Effect of moderate and severe hypoxia on mesenteric
resistance arteries

Divergence in SBP recovery from moderate and severe
hypoxia was most consistent and robust at the end of the
study. Thus, to determine whether localized molecular
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Figure 6. Physiological responses of
systolic blood pressure (SBP) during
baseline, severe or moderate hypoxia,
and 72 hours of normoxic recovery
Hourly averages for severe (A) and moderate
(B) hypoxia experiments. Average SBP
recorded following baseline, severe hypoxia,
24 h post-hypoxia, 48 h post-hypoxia and
72 h post-hypoxia during lights on (C)
(χ2 = 85.4, d.f. = 4, P < 0.0001) and lights
off (D) (χ2 = 41.2, d.f. = 4, P < 0.0001).
Average SBP recorded following baseline,
moderate hypoxia, 24 h post-hypoxia, 48 h
post-hypoxia and 72 h post-hypoxia during
lights on (E) (χ2 = 50.9, d.f. = 4, P < 0.0001)
and lights off (F) (χ2 = 52.5, d.f. = 4,
P < 0.0001). Two-way ANOVA of SBP during
lights on (G) (interaction F4,24 = 11.5,
P < 0.0001; main effect of time F4,24 = 4.6,
P = 0.0067; main effect of group F1,6 = 1.4,
P = 0.2779) and lights off (H) (interaction
F4,24 = 3.3, P = 0.0265; main effect of time
F4,24 = 0.1, P = 0.9830; main effect of group
F1,6 = 0.7, P = 0.4329). For panels (C) to (F):
∗P < 0.05 compared to baseline. For panels
(G) and (H): a, significant interaction; b,
significant main effect of time; †P < 0.05
compared to moderate hypoxia at the same
time point. Values are the mean ± SEM
(severe, n = 4; moderate, n = 5).
[Colour figure can be viewed at
wileyonlinelibrary.com]
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mechanisms of hypoxic stress in resistance arteries could
account, at least in part, for the observed divergent
physiological responses, we examined gene expression of
canonical targets of HIF (EPO and HMOX1) in mesenteric
arteries. Both moderate and severe hypoxia increased
HMOX1 mRNA expression, whereas EPO was unchanged

(Fig. 9A and B). HMOX1 protein levels (Fig. 9C–E)
were in agreement with mRNA expression. This suggests
that residual oxidative stress but not tissue hypoxia is
observed in resistance blood vessels. Physiologically, the
consequence of hypoxia on SBP resides in a summation
of inputs: both systemic and localized. Here, we find
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Figure 7. Physiological responses of heart
rate during baseline, severe or moderate
moderate hypoxia and 72 h of normoxic
recovery
Hourly averages for severe (A) and moderate
(B) hypoxia experiments. Average heart rate
recorded following baseline, severe hypoxia,
24 h post-hypoxia, 48 h post-hypoxia and 72 h
post-hypoxia during lights on (C) (χ2 = 91.8,
d.f. = 4, P < 0.0001) and lights off (D)
(F4,276 = 78.2, P < 0.0001). Average heart
rate recorded following normoxia, moderate
hypoxia, 24 h post-hypoxia, 48 h post-hypoxia
and 72 h post-hypoxia during lights on (E)
(χ2 = 98.4, d.f. = 4, P < 0.0001) and lights
off (F) (χ2 = 24.7, d.f. = 4, P < 0.0001).
Two-way ANOVA of heart rate during lights
on (G) (interaction F4,52 = 19.7, P < 0.0001;
main effect of time F4,52 = 5.0, P = 0.0018;
main effect of group F1,13 = 10.9,
P = 0.0057) and lights off (H) (interaction
F4,52 = 11.8, P < 0.0001; main effect of time
F4,52 = 5.9, P = 0.0005; main effect of group
F1,13 = 13.7, P = 0.0026). For panels (C) to
(F): ∗P < 0.05 compared to baseline. For
panels (G) and (H): a, significant interaction; b,
significant main effect of time; c, significant
main effect of group; †P < 0.05 compared to
moderate hypoxia at the same time point.
Values are the mean ± SEM (severe, n = 7;
moderate, n = 8). Note: y-axes for (A) and (B)
are broader than (C) to (H) for visual clarity.
[Colour figure can be viewed at
wileyonlinelibrary.com]
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Table 3. Frequency and time domain heart rate variability analysis

15% O2 9% O2

Baseline 72 h Post hypoxia Baseline 72 h Post hypoxia

Mean R–R interval (ms)b 123.49 ± 13.38 141.21 ± 17.14 129.43 ± 7.28 150.43 ± 18.87∗

SDNN (ms)b 5.52 ± 2.70 7.89 ± 2.61∗ 5.39 ± 1.45 7.24 ± 1.83
RMSSD (ms)b 6.57 ± 3.30 10.59 ± 3.92∗ 6.36 ± 2.16 8.47 ± 2.76
LF (nu)a 62.18 ± 8.72 57.08 ± 6.17∗ 62.12 ± 6.85 73.59 ± 4.91∗†

HF (nu)a,c 37.82 ± 8.72 42.91 ± 6.17∗ 37.88 ± 6.85 26.41 ± 4.91∗†

Total power (ms2)b 43.35 ± 37.76 73.19 ± 36.72 31.84 ± 15.66 60.55 ± 33.49
LF/HFa,c 2.32 ± 0.87 1.79 ± 0.45 2.56 ± 1.00 3.53 ± 0.79∗†

Data are the mean ± SD. SDNN, SD of normal R–R intervals; RMSSD, root mean square of successive normal R–R interval differences.
aSignificant interaction. bSignificant main effect of time. cSignificant main effect of group. ∗P < 0.05 compared to baseline. †P < 0.05
compared to moderate hypoxia at the same time point (n = 7 per group).

agreement in localized stress but disagreement in systemic
sympathetic dominance.

Discussion

We demonstrate, for the first time, contrasting
haemodynamic responses during normoxic recovery
following moderate and severe hypoxia. These results
highlight the importance of hypoxic severity with
respect to mediating the physiological response. Moderate
and severe hypoxia both decreased SBP during the
hypoxic insult, whereas they induced divergent hyper-
tensive and hypotensive responses, respectively, following
normoxic recovery. Although both moderate and severe
hypoxia increased expression of HMOX1, a potent
hypoxia-induced vasodilator, only severe hypoxia induced
a shift in sympathovagal balance towards sympathetic
dominance. Conversely, moderate hypoxia resulted in
an increase in parasympathetic activity with a potential
decrease in sympathetic dominance. Thus, the effects
of hypoxia on SBP probably represent the net balance
between the increased vasodilatory effects of HMOX1 and
the opposing sympathetic vasoconstriction, secondary to
chemoreflex activation. Furthermore, both moderate and
severe hypoxia disrupted the circadian rhythm during
the hypoxic insult and transiently so during normoxic
recovery. Such observations have major implications for
our understanding of basic physiology and the role of
hypoxia in disease progression.

Although rare, severe reductions in PaO2 do occur
pathologically in some end-stage patients (Edell et al.
1989; Dubois et al. 1994; Ferrer et al. 2003). These
severe consequences are often the final result of disease
progression. For the majority of patients suffering
from conditions where hypoxia is a salient feature, the
reductions in PaO2 are more moderate (Thomas et al.
1961; Hayashi, 1976; Oswald-Mammosser et al. 1995;
Mannino et al. 2002). Despite moderate hypoxia being

typical for many physiological (i.e. exercise, altitude) and
pathological (e.g. COPD, heart failure) conditions, severe
hypoxia is more commonly used in research. Although
we are not the first to investigate the physiological effects
of moderate hypoxia, previous work focused largely on
the metabolic and ventilatory responses (Frappell et al.
1991; Morgan et al. 2014). In those animal models,
the relationship between moderate and severe hypoxia
is scaled, similar to our findings with respect to body
temperature and activity. However, the effects on cardio-
vascular measures are less clear. Although we also report
divergent responses in heart rate and SBP during the hypo-
xic insult, there is little support from the literature, which
is largely attributed to the uniqueness and novelty of radio-
telemetry methodology.

Circadian rhythms are fundamental to our homeo-
stasis, occurring in almost every organ in the body,
and, when disrupted, they exacerbate disease pathogenesis
(Martino et al. 2007; Podobed et al. 2014). Recent
profiling of the mouse genome reveals that 43% of all
protein-coding genes display a biological rhythm, most
in an organ-specific manner (Zhang et al. 2014). Loss
or disruption of circadian rhythm, or chronodisruption,
is associated with worsened pathology in numerous
conditions, including cancer (Sephton et al. 2000), obesity
(Lamia et al. 2009) and cardiovascular disease (de la Sierra
et al. 2009; Martino et al. 2011). Furthermore, despite
evidence of a hypoxic influence on circadian rhythm
through interactions between clock genes Period1 and
BMAL1 with HIF-1α, studies aiming to understand the
effects of hypoxia on circadian rhythm are rare (Chilov
et al. 2001; Peek et al. 2017). In the present study, we report
that severe hypoxia suddenly and dramatically decreased
SBP, whereas moderate hypoxia resulted in a delayed and
gradual decrease. This might be explained by differential
alternations in the circadian clock (as suggested by
differences in altered circadian rhythm between hypo-
xic severities), resulting in altered expression/activation
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Table 4. Heart rate variability analysis at baseline, hypoxia and
normoxic recovery

Group 9% O2 15% O2

Mean R–R interval (ms)a,b,c

Baseline 129.43 ± 7.28 123.49 ± 13.38
Hypoxia 175.16 ± 22.53∗† 121.32 ± 13.55
24 h Post hypoxia 150.25 ± 16.82∗ 140.84 ± 15.05∗

48 h Post hypoxia 155.77 ± 5.15∗ 141.72 ± 19.68∗

72 h Post hypoxia 150.43 ± 18.87∗ 141.21 ± 17.14∗

SDNN (ms)a,b,c

Baseline 5.39 ± 1.45 5.52 ± 2.70
Hypoxia 25.20 ± 9.85∗† 4.52 ± 2.20
24 h Post hypoxia 11.69 ± 3.29∗ 6.92 ± 3.24
48 h Post hypoxia 8.36 ± 2.25 6.32 ± 2.78
72 h Post hypoxia 7.24 ± 1.83 7.89 ± 2.61

RMSSD (ms)a,b,c

Baseline 6.36 ± 2.16 6.57 ± 3.30
Hypoxia 33.60 ± 15.08∗† 4.94 ± 2.49
24 h Post hypoxia 14.60 ± 5.14∗ 8.71 ± 4.31
48 h Post hypoxia 9.50 ± 3.39 7.77 ± 3.82
72 h Post hypoxia 8.47 ± 2.76 10.59 ± 3.92

LF (nu)a,b

Baseline 62.12 ± 6.85 62.18 ± 8.72
Hypoxia 72.17 ± 10.00∗ 68.37 ± 6.45
24 h Post hypoxia 65.49 ± 13.86 60.75 ± 7.84
48 h Post hypoxia 72.91 ± 10.97∗ 60.93 ± 9.52
72 h Post hypoxia 73.59 ± 4.91∗† 57.08 ± 6.17

HF (nu)a,b

Baseline 37.88 ± 6.85 37.82 ± 8.72
Hypoxia 27.82 ± 10.00∗ 31.62 ± 6.45
24 h Post hypoxia 34.50 ± 13.85 39.25 ± 7.84
48 h Post hypoxia 27.09 ± 10.97∗ 39.07 ± 9.52
72 h Post hypoxia 26.41 ± 4.91∗† 42.91 ± 6.17

Total power (ms2)a,b,c

Baseline 31.84 ± 15.66 43.35 ± 37.76
Hypoxia 971.04 ± 686.84∗† 25.84 ± 22.81
24 h Post hypoxia 154.51 ± 86.83 50.97 ± 46.43
48 h Post hypoxia 70.33 ± 32.30 42.43 ± 29.83
72 h Post hypoxia 60.55 ± 33.49 73.19 ± 36.72

LF/HFb,c

Baseline 2.56 ± 1.00 2.32 ± 0.87
Hypoxia 4.30 ± 1.35∗ 3.14 ± 0.67
24 h Post hypoxia 3.43 ± 3.00 2.11 ± 0.71
48 h Post hypoxia 4.10 ± 2.27∗† 2.02 ± 1.01
72 h Post hypoxia 3.53 ± 0.79 1.79 ± 0.45

Data are the mean ± SD. SDNN, SD of normal R–R intervals;
RMSSD, root mean square of successive normal R–R interval
differences. aSignificant interaction. bSignificant main effect of
time. cSignificant main effect of group. ∗P < 0.05 compared to
baseline. †P < 0.05 compared to moderate hypoxia at the same
time point (n = 7).

of HIF-1α via BMAL1 (Peek et al. 2017). We also report
that severe hypoxia disrupts the circadian rhythm of SBP,
temperature, heart rate and activity in mice. Notably, we
are the first to demonstrate chronodisruption in response
to a more clinically relevant level of moderate hypo-
xia. Amplitude dampening is associated with worsened
disease progression and increased mortality (Hurd &
Ralph, 1998; Mormont et al. 2000). Thus, although
moderate hypoxia may not result in the abolishment of
circadian rhythm, the alterations in amplitude may be
indicative of pathology and hold significant implications
for patients suffering from chronic or nocturnal hypoxia.
To fully understand the pathophysiological consequences
of hypoxia, it is important to evaluate different severities
and explore how they affect circadian rhythm and the
other factors that play a crucial role in the aetiology of
disease.

Heterogeneous activation of the HIF pathway occurs
in response to different hypoxic severities following
reductions in haemoglobin concentration (anaemic hypo-
xia) (Tsui et al. 2014) and F IO2 (hypoxic hypoxia) (Stroka
et al. 2001). Furthermore, different severities of anaemia
also induce differential expression of HIF-dependent
genes, suggesting a corresponding functional difference
in the physiological response (Tsui et al. 2014; Mistry et al.
2018). Expression of EPO, nitric oxide synthase (NOS)
and monocarboxylate transporter 4 are all differentially
activated between mild, moderate and severe anaemia in
an organ-specific manner (Tsui et al. 2014). The results
of the present study demonstrate that both moderate and
severe hypoxia are associated with corresponding increases
in HMOX1 mRNA and protein. HMOX1 is an inducible
enzyme responsible for catabolizing haeme into ferrous
iron, biliverdin and carbon monoxide (Liu et al. 2007;
Brunt et al. 2009; Allwood et al. 2014). HMOX-derived
carbon monoxide is a potent vasodilator, similar to NO,
and is involved in regulating vascular tone (Thorup et al.
1999). Furthermore, HMOX-derived carbon monoxide
also inhibits endothelial NOS expression (Thorup et al.
1999), which is supported by decreased endothelial NOS
gene expression following both moderate and severe hypo-
xia in our model (data not shown).

We consider that the observed hypotension following
moderate hypoxia is a result of alterations in local
vascular tone because of the increased production
of HMOX-derived carbon monoxide, despite potential
reductions in endothelial NOS expression. However,
following severe hypoxia, SBP is increased as a result of
concomitant sympathetic activation, as demonstrated by
the increased LF/HF ratio, probably because of chemo-
reflex activation. Severe hypoxia has been demonstrated
previously to increase sympathetic drive (Greenberg et al.
1999; Zoccal et al. 2007), further supporting our findings.
Differences in the cardiovascular response during the
hypoxic insult between severe and moderate hypoxia
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may be partly a result of a physiological response via
hypoxia-induced anapyrexia. This is a well-characterized
response to the proportion of hypoxia, where the thermo-
regulatory set-point is decreased to reduce metabolic
demands and protect tissues from cellular damage (Steiner
& Branco, 2002). This response occurs both in rodents
(Robinson & Milberg, 1970; Steiner et al. 2000) and
humans (Kottke & Phalen, 1948; Robinson & Haymes,
1990); however, because body temperature is linearly
associated with heart rate in mice, this reduction in body
temperature during severe hypoxia was accompanied by
depressions in heart rate and blood pressure in our model.
During severe hypoxia, there is also an acute systemic
vasodilatory effect (Fredricks et al. 1994; Marshall, 2000;
Weisbrod et al. 2001), which is proposed to cause a decrease
in mean arterial pressure in rodents (Campen et al. 2005;
Gonzalez et al. 2007; Marcus et al. 2009). In agreement
with this, we observed a sudden and drastic decrease
in SBP during severe hypoxia that we did not observe
during moderate hypoxia. By contrast, chronic exposure
to severe hypoxia results in an elevated mean arterial
pressure in humans (Calbet, 2003; Parati et al. 2014)
and rodents (Campen et al. 2005; Marcus et al. 2009).
Thus, the differential cardiovascular responses observed
following moderate and severe hypoxia represent the net
balance between local vasodilatory factors and central
neural sympathoexcitatory regulation of vasculature
tone.

Although we used activity as a surrogate marker of
arousal, a limitation of the present study is the absence of
ventilation and arousal state (i.e. EEG) recordings for each
animal, which may influence HRV. In addition, telemetry
units were set to record only 30 s of data every 5 min.
Although we acknowledge the limitation that our segment
length is below the 1–3 min used in other studies, we
found it easier to identify stationarity of the signal using
shorter time lengths. To accommodate the shorter time
length, we used nine 30 s segments. Indeed, the averaging
of multiple 1 min segments produces comparable means
to those of 3 min data segments (Thireau et al. 2008).
Finally, although we observed disruptions to the circadian
rhythm during and following hypoxia, longer durations
of hypoxic stress and recovery should also be investigated.
This could provide valuable insight regarding whether
moderate hypoxia disrupts the circadian rhythm and
contributes to diseases such as hypertension and mild
COPD.

Impaired tissue oxygenation is present in numerous
chronic diseases and is associated with a worse quality
of life and clinical outcomes. Decades of research
have almost exclusively focused on investigating the
effects of severe hypoxia in pathophysiological states,
whereas the same effects of moderate hypoxia remain
uninvestigated. Furthermore, there is no standardization
for the classification of hypoxic severities, with the
same reduction in F IO2 being classified as mild,
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Figure 8. Effects of moderate or severe hypoxia on heart rate variability
Mean ± SD R–R interval of normal R–R intervals (SDNN) at baseline and 72 h post severe and moderate hypoxia (A)
(interaction F1,12 = 0.1, P = 0.7543; main effect of time F1,12 = 14.3, P = 0.0026; main effect of group F1,12 = 1.6,
P = 0.2352). LF spectral power (B) (interaction F1,12 = 18.5, P = 0.0010; main effect of time F1,12 = 1.5, P = 0.2500;
main effect of group F1,12 = 4.7, P = 0.0515); HF spectral power (C) (interaction F1,12 = 26.2, P = 0.0003; main
effect of time F1,12 = 3.9, P = 0.0723; main effect of group F1,12 = 6.4, P = 0.0266); and the ratio of LF/HF (D)
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Figure 9. Effect of moderate or severe hypoxia on the expression of HIF targets in mesenteric resistance
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Mesenteric artery gene expression of erythropoietin (EPO) (A) (interaction F1,15 = 0.3, P = 0.3227; main effect
of time F1,15 = 1.1, P = 0.3085; main effect of group F1,15 = 0.2, P = 0.6631) and haeme oxygenase 1
(HMOX1) (B) (interaction F1,20 = 0.6, P = 0.4327; main effect of time F1,15 = 20.2, P = 0.0002; main
effect of group F1,15 = 0.4, P = 0.5102) during baseline and following 24 h of severe or moderate hypo-
xia (n = 4–8 per group). b, significant main effect of time. HMOX1 protein levels 72 h post severe and
moderate hypoxia (C) (severe U = 0.0, P = 0.0119; moderate U = 6.0, P = 0.0325; n = 6 for normoxia
and moderate, n = 3 for severe; where two animals were required per sample). ∗P < 0.05 compared to normoxia.
Values are the mean ± SD. Representative MemCode total protein stain (D) and HMOX1 immunoblot (E).
[Colour figure can be viewed at wileyonlinelibrary.com]

moderate and severe, depending on the study design.
By contrast to hypoxic hypoxia, anaemic hypoxia has
defined haemoglobin concentrations recommended by
the World Health Organization for the classification
of mild, moderate and severe anaemia. This lack of
standardization represents a significant barrier in the
interpretation and comparison of results obtained from
different studies using reduced F IO2 as the primary insult.

In summary, we demonstrate, for the first time,
differential pressor responses during normoxic recovery

following moderate and severe hypoxia. These effects
appear to be mediated, at least in part, by different auto-
nomic nervous system responses. These results should
stimulate additional studies investigating the therapeutic
potential of moderate hypoxic exposure to improve over-
all cardiovascular health. The findings of the present study
illustrate a critical need to revisit the basic pathophysiology
of hypoxia to promote standardization, to reconcile our
understanding of the literature and to improve clinical
translation.
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Leconte C, Léger M, Boulouard M, Tixier E, Fréret T,
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